Delta-semidefinite and Delta-convex Quadratic Forms in Banach Spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nearest Points and Delta Convex Functions in Banach Spaces

Given a closed set C in a Banach space (X, ‖ · ‖), a point x ∈ X is said to have a nearest point in C if there exists z ∈ C such that dC(x) = ‖x − z‖, where dC is the distance of x from C. We shortly survey the problem of studying the size of the set of points in X which have nearest points in C. We then turn to the topic of delta-convex functions and indicate how it is related to finding neare...

متن کامل

Decomposable quadratic forms in Banach spaces

A continuous quadratic form on a real Banach space X is called decomposable if it is the difference of two nonnegative (i.e., positively semidefinite) continuous quadratic forms. We prove that if X belongs to a certain class of superreflexive Banach spaces, including all Lp(μ) spaces with 2 ≤ p < ∞, then each continuous quadratic form on X is decomposable. On the other hand, on each infinite-di...

متن کامل

Approximate mixed additive and quadratic functional in 2-Banach spaces

In the paper we establish the general solution of the function equation f(2x+y)+f(2x-y) = f(x+y)+f(x-y)+2f(2x)-2f(x) and investigate the Hyers-Ulam-Rassias stability of this equation in 2-Banach spaces.

متن کامل

Delta Closure and Delta Interior in Intuitionistic Fuzzy Topological Spaces

Due to importance of the concepts of θ-closure and δ-closure, it is natural to try for their extensions to fuzzy topological spaces. So, Ganguly and Saha introduced and investigated the concept of fuzzy δ-closure by using the concept of quasicoincidence in fuzzy topological spaces. In this paper, we will introduce the concept of δ-closure in intuitionistic fuzzy topological spaces, which is a g...

متن کامل

A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint

In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Positivity

سال: 2008

ISSN: 1385-1292,1572-9281

DOI: 10.1007/s11117-007-2106-6